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Large-scale CO2 Sequestration
Rationale for geophysical monitoring

About 12 Gt CO2 must be stored before 2050 to meet European targets

Subsurface formation must have sufficient storage capacity

CO2 injection will likely be performed with few wells

→ High injection rates must be expected

→ Assess pressure increase, in addition to CO2 plume placement
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Forward Modelling Study
Results along cross section intersecting the wells

∆S (CO2 saturation change) ∆P (Pressure change)

Select region around middle well for Inverse Modelling Study
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Forward Modelling Study
Results along cross section intersecting the wells – around middle well

∆S ∆P



Inverse Modeling Study
Seismic data
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V (∆S ,∆P) = V0(1− k∆S − l∆P −m(∆P)2) (Landrø 2001)

(We assume that V0 is known)



Inverse Modeling Study
Seismic data

Seismic survey

Data → velocity

ds → V

(∆S ,∆P)

Aim to estimate
V (∆S ,∆P). Will not
attempt to estimate ∆S
and/or ∆P

V (∆S ,∆P) = V0(1− k∆S − l∆P −m(∆P)2) (Landrø 2001)

(We assume that V0 is known)



Inverse Modeling Study
Seismic data

Seismic survey

Data → velocity

ds → V (∆S ,∆P)

Aim to estimate
V (∆S ,∆P). Will not
attempt to estimate ∆S
and/or ∆P

V (∆S ,∆P) = V0(1− k∆S − l∆P −m(∆P)2) (Landrø 2001)

(We assume that V0 is known)



Inverse Modeling Study
Seismic data

Seismic survey

Data → velocity

ds → V (∆S ,∆P)

Aim to estimate
V (∆S ,∆P). Will not
attempt to estimate ∆S
and/or ∆P

V (∆S ,∆P) = V0(1− k∆S − l∆P −m(∆P)2) (Landrø 2001)

(We assume that V0 is known)



Seismic Velocity
Dependence on ∆S and ∆P (and V0)
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Assimilation Results for V
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Geophysical Data
Seismic, gravimetric and electromagnetic

Seismic: ds → V (∆S ,∆P)

Gravimetric: dg → ρ(∆S ,∆P)

≈ ρ(∆S)

(ρ: density)

Electromagnetic: de → σ(∆S) (σ: electric conductivity)

Gravimetric and electromagnetic data are complementary to seismic
data, but are considered to have inferior resolution

→ Utilize results from assimilation of electromagnetic or gravimetric

→

data to improve prior model for V in inversion of seismic data
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Gravimetric Data

Acquisition – overview

Acquisition – detail
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CO2-saturated subsurface
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Joint Utilization of Geophysical Data
Example with electromagnetics and seismics
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Joint Utilization of Geophysical Data
Summary of results for posterior mean of V
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Joint Utilization of Electromagnetic and Seismic Data
Development of estimate for V
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Parameterization

The true V is characterized by large regions with slow (unknown)
variation, sharp boundaries between regions, and unknown region shapes

A parameterization (very similar to a level set parametrization)
facilitating shape estimation and sharp region boundaries, and enforcing
slow variation within regions, has therefore been applied

Part of each state vector, y , will contain parameters, a, controlling
region-boundary positions, b; b = f (a).
Other parts will contain parameters controlling spatial variation within
each region.

yT = [a1 . . . aA|m1 . . .mM |q1 . . . qQ ]
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Illustration of Parameterization—Prior Model for V
Mean of V , mean of region boundaries, and region-boundaries ensemble

V
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Summary

A methodology for assimilating data obtained from geophysical
monitoring of the subsurface, and its application to a modelling study
targeting CO2 injection in the Skade formation in the North Sea, have
been presented

Joint utilization of different geophysical data types, advanced
parameterization techniques, and ensemble-based data assimilation, are
key elements in the methodology

Improved estimates of seismic velocity were obtained when
electromagnetic or gravimetric data were utilized to improve the prior
model for seismic velocity before inversion of the seismic data
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